Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Sensors
- Micro and Nanofabricated Sensors
- (268i) Functionalization of Carbon Nanotube Thin-Film Transistors Fabricated By Material Recognition Property of Peptide Aptamer
The CNT-TFT was fabricated by following procedure. Au as source and drain electrodes were patterned on the silicon substrate as a back gate (phosphorus-doped, 0.001 Ω∙cm resistivity) with thermal oxide film with a thickness of 100 nm. For immobilizing the CNTs as a channel, the peptide aptamer (CNTBP) of amino-acid sequence with [HMGLTKIHYSAL] which was previously identified for single-walled CNTs (SWCNTs) were introduced via silane coupling reagent (3-Aminopropyl triethoxysilane). Subsequently, the droplet of the SWCNT distributed with the single-stranded DNA was applied between the electrodes, and the substrate was washed with enough deionized water. To functionalize the CNT surface by Pd nanoparticles, sodium tetrachloropalladate (II) and the following reducing agent, sodium borohydride or L(+)-ascorbic acid, was applied. Morphological observation was investigated of the CNT surface was investigated through a scanning electron microscope (SEM) or transmission electron microscope (TEM), and the component analysis was performed by energy dispersive X-ray spectroscopy (EDX). Electrical characteristics of the CNT-TFT device were evaluated through a semiconductor parameter analyzer.
The SWCNTs immobilized surface was observed through optical microscopy and SEM. Although the deposited CNTs were invisible through optical microscopy, high-density and thin layered CNTs network was found only in the case with the CNTBP through SEM observation. Furthermore, the drain current-voltage characteristics of the CNT-TFT were investigated. In the case of using semiconducting CNTs, the drain current was increased in response to the gate voltage and the field-effect mobility reached 0.23~6.7×10−1 cm2 /V∙s which value was not ideal but applicative. In contrast, ohmic properties were observed in the case with conducting CNTs. These results showed transparent CNTs electronic components could be formed by utilizing the peptide aptamer. Furthermore, Pd nanoparticles deposited on the CNT surface was evaluated through TEM and EDX. In the preparation using ascorbic acid as a reducing agent, the particles with an average diameter of 5 nm were found on the CNT networks successfully. In the case using sodium borohydride, aggregated particles were observed relatively. In the case of both, the depositing particles of Pd were confirmed. As evidenced here, this simple process has a widespread potential for the fabrication of sensors with high-sensitivity and selectivity using CNT-based nanostructures.