Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Engineering Sciences and Fundamentals
- Thermodynamics and Transport Under Pressure
- (218f) The Thermodynamic Modeling of Methane-Carbon Dioxide-Liquid Water–Hydrates
In this work, we analyzed the thermodynamic properties of CO2-water, CH4-water, and CO2-CH4-water system based on the latest version of SAFT equation of state, i.e. SAFT2-RPM, which is applied to calculate the fugacities in vapor and liquid phases. Residual Helmholtz free energy is computed as the sum of hard sphere repulsion, hard chain formation, dispersion and association terms. Van der Waals-Platteeuw model is employed to calculate the fugacity of water in the liquid and hydrate phases. The interaction between water and CO2/CH4 in hydrate cavities is calculated by Langmuir constant. The Kihara cell potential with spherical cell assumption is applied to estimate the cavity potential function.
The three-phase V-Lw-H equilibrium conditions for CO2-CH4-water system are modeled at various temperatures ranging from 273.15 to 286.15 K and various CO2 vapor concentrations in the mixture. The calculated equilibrium conditions are in a good agreement with experimental data with the average deviation less than 1%.