Breadcrumb
- Home
- Publications
- Proceedings
- 2012 AIChE Annual Meeting
- Catalysis and Reaction Engineering Division
- Catalyst Deactivation II
- (619d) Sintering of Copper-Based Catalysts for Methanol Synthesis From Carbon Dioxide
Our approach for enhancing sintering resistance is to add promoters that can help suppress the crystallization of active catalytic phases during thermal treatment. We have examined the sintering of Cu-based catalysts designed specifically for methanol synthesis from CO2 using various techniques including N2O decomposition, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The incorporation of gallium and yttrium oxides into our catalyst formulations is effective in maintaining high Cu dispersion, therefore leading to significant improvement in the overall performance. Interestingly, ZnO remains well-dispersed or XRD-amorphous in best-performing catalysts. We have also attempted to fit sintering data to a model that can predict a limiting Cu dispersion at infinite time. Kinetic parameters such as rate constant and deactivation order obtained from curve fitting provide new insight into possible sintering mechanisms. These findings have important implications for the rational design of robust catalytic systems for CO2 conversion to fuels and chemicals.