Breadcrumb
- Home
- Publications
- Proceedings
- 2012 AIChE Annual Meeting
- Systems Biology
- In Silico Systems Biology: Intracellular Signaling and Gene Regulation
- (497c) Minimal Reaction Network for Bistability in the MAPK Signalling Cascade
We used the stoichiometric networks analysis (SNA) to decompose a system involving activation of MAPKKK and first of the two double-phosphorylation cascades (which we call single-phosphorylation cascade model) into irreducible or elementary subnetworks (ESs). Then we identified those ESs that are potentially sources of nontrivial dynamical instabilities leading to bistability or oscillations. By using the classification system for chemical oscillators we further simplified the topology of the MAPK reaction network into the smallest network which still preserves bistability but does not allow for oscillations. This network can be examined analytically using both convex parametrization employed by the SNA and classical kinetic parameters (i.e., rate coefficients) to determine multiple steady states and their stability. Next we analyze the single-phosphorylation cascade model by using numerical continuation and determine what is the role of various subnetworks in forming the bistability.