Breadcrumb
- Home
- Publications
- Proceedings
- 2012 AIChE Annual Meeting
- Catalysis and Reaction Engineering Division
- Electrocatalysis for PEM Fuel Cells II
- (485e) Dealloyed Pt100-x-YCoxNiy Electrocatalysts for Oxygen Reduction Reaction
The potential dependent morphology exhibits a smooth progression from characteristic Pt- to Ni- and finally Co-rich deposits with decreasing potential. Xray diffraction (XRD) spectra indicate the as-deposited films are solid solutions with an fcc crystallographic structure at more positive potentials that transition to a hexagonal phase for Co-rich deposits. The films were activated by dealloying or selective removal of the IG metals, creating a variety of Pt-rich nanoporous morphologies, as shown by electron microscopy. The compositions of the dealloyed remnants were close to a 3:1 Pt:IG stoichiometry as shown by energy dispersive X ray spectroscopy (EDS) and XRD peak positions.
The Pt100-x-yCoxNiy electrocatalysts were examined using a rotating disk electrode to find the kinetic activity and surface area of each composition. The Pt mass loading was determined from EDS values and electrochemical quartz crystal microbalance. IG-rich films displayed the highest specific activity and hydrogen underpotential deposition (HUPD) surface area with the most active films exhibiting an iR corrected specific activity enhancement factor of 6.8 and 4.7 over a polycrystalline Pt rotating disk electrode at 0.90V and 0.95V RHE. The combined improvements in specific activity and HUPD lead to a drastic increase in mass activity for IG-rich films.