Breadcrumb
- Home
- Publications
- Proceedings
- 2012 AIChE Annual Meeting
- Separations Division
- Adsorbent Materials for Sustainable Energy
- (460g) Kinetics and Mechanism of Adsorption of Aromatic Sulfur Compounds On MOFs From Liquid Fuels
Large-ring aromatic sulfur compounds e.g. benzothiophene (BT), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) are present in raw petroleum, refinery napthas and commercial liquid fossil fuels. Aromatic sulfur compounds cause air pollution, degradation of catalytic converters of combustion engines, and deactivation of fuel-reforming catalysts of fuel cells. Adsorption capacity of some large-ring aromatic sulfur compounds from model liquid fossil fuels with certain MOFs was previously reported. One popular group of MOFs contains anions of 1,3,5-benzenetricarboxylic acid as organic “linker”; two well-known MOFs of this group are Cu-containing Basolite C300 aka HKUST-1 and Fe-containing Basolite F300 aka MIL-100(Fe).
Here, we report thermodynamic and kinetic studies of molecular mechanisms of temperature-dependent reversible adsorption/desorption of BT, DBT, 4-MDBT and 4,6-DMDBT on C300 and F300 MOFs from model liquid fuel in tetradecane n-C14H30 (model diesel fuel or refinery naphtha). Adsorption of BT, DBT, 4-MDBT and 4,6-DMDBT on Basolite C300 and F300 proceeds without formation of molecular products in liquid phase, as found by the RP-HPLC with the UV absorbance detection. Adsorption capacity follows the trend at 25 and 75 °C: BT > DBT > 4-MDBT > 4,6-DMDBT, consistently with molecular size and diameters of major kinds of nanopores present in C300 MOF. Kinetics of adsorption at 25 and 75 °C proceeds on timescale of hours, is more complex than either zeroths, first or second order rate law, and is due to adsorption on different sites in C300 and F300 MOFs. Two types of adsorption kinetics are observed, depending on initial molar concentration of aromatic sulfur compound: i) preferential adsorption of aromatic sulfur compound and ii) preferential adsorption of solvent n-C14H30, followed by preferential adsorption of aromatic sulfur compound. Experimentally determined excess adsorption isotherms of binary solutions “aromatic sulfur compound in n-C14H30“ on MOF and calculated thermodynamic equilibrium constants support the assignments of adsorption sites.