Breadcrumb
- Home
- Publications
- Proceedings
- 2012 AIChE Annual Meeting
- Computing and Systems Technology Division
- Process Design I
- (445b) Systematic Synthesis of Augmented Biomass-to-Liquid Fuel Processes
Here, we present systematic synthesis of augmented biomass-to-liquid fuel processes, which maximize biomass carbon conversion to liquid fuel by using supplemental energy derived from sunlight in the form of H2, heat, and electricity. While standalone biomass-to-liquid fuel processes are limited to <50% biomass carbon recovered as liquid fuel, augmented processes overcome this barrier by utilizing biomass as a carbon source combined with supplemental solar energy use. The emphasis is on identifying augmented processes that require the least amount of supplemental solar energy input corresponding to a given biomass carbon recovery.
We focus on two promising biomass to liquid fuel thermochemical approaches of heat-assisted biomass gasification followed by fuel synthesis and biomass fast-hydropyrolysis/hydrodeoxygenation (HDO). A superstructure of all possible process configurations for the aforementioned thermochemical routes is developed. Subsequently, an equation-oriented nonlinear optimization model is solved to identify the optimal process configuration for different target carbon recovery levels. The novel features of the process synthesis include: 1) a simplified fast-hydropyrolysis/HDO model derived from experimental literature, 2) simultaneous process heat, power and mass integration while allowing for co-generation and 3) flexibility to design for different carbon recovery levels. The presentation will also briefly discuss the progress in developing a theoretical guarantee of the global optimality of the solutions presented.