Breadcrumb
- Home
- Publications
- Proceedings
- 2012 AIChE Annual Meeting
- Separations Division
- CO2 Capture by Adsorption-Adsorbents
- (204c) Characterization and CO2 Sorption Properties of Carbon-Based Materials for Carbon Capture Applications
To overcome solvent-based regeneration expenses, micro and mesoporous sorbents have become promising candidates. A considerable variety of sorbent materials have been investigated for the application of CO2 capture, including metal organic frameworks, zeolites, carbon nanotubes and mesoporous silicas, including SBA-15 and MCM-41. However, the CO2 sorption capacity and kinetics under realistic flue gas conditions remain unclear. This research focuses on two sets of CO2 sorbents: amine-functionalized multiwalled carbon nanotubes (aminated MWNTS) and biomimetic micro- and mesoporous carbon-based materials. Multi-walled carbon nanotubes were functionalized with the aminosilane compounds aminopropyltriethoxysilane (APTES) and N-dimethylaminopropyltrimethoxy-silane (DMAPS) and the resulting materials were characterized and tested for CO2 capture under relevant conditions. As the first step in developing biomimetic sorbents, silica-based sorbents were functionalized with zinc in order to mimic CO2 hydration that takes place with carbonic anhydrase, as a means to easily capture and release CO2.
Breakthrough experiments have been performed in a temperature-controlled packed-bed reactor with small amounts of sorbent (i.e., < 250 mg). Experiments were performed with a resolution of 0.1 mmol CO2 per gram of sorbent using an Extrel MAX300-LG quadrupole mass spectrometer downstream of the packed bed. The inlet gas was either a mixed gas (CO2, N2 and H2O) for testing under ideal conditions or a simulated flue gas created by burning methane in air, with potential contaminants such as SO2, HCl and NOx doped in at part per million levels post-combustion. The breakthrough experiments provide an understanding of CO2 uptake, sorbent repeatability and impact of flue gas contaminants on capture. In addition, a Quantachrome Autosorb iQ2 automated gas sorption analyzer is used to determine surface area, pore volume and pore size distribution of the tested CO2sorbents.