Breadcrumb
- Home
- Publications
- Proceedings
- 2012 AIChE Annual Meeting
- Sustainable Engineering Forum
- Reactor Engineering for Biomass Feedstocks
- (167c) Is Elevated Pressure Required to Achieve a High Fixed-Carbon Yield of Charcoal From Biomass?
A round-robin study of corncob charcoal and fixed-carbon yields involving three different thermogravimetric analyzers (TGAs) revealed the impact of vapor-phase reactions on the formation of charcoal. Deep crucibles that limit the egress of volatiles from the pyrolyzing solid greatly enhance charcoal and fixed-carbon yields. Likewise, capped crucibles with pinholes increase the charcoal and fixed-carbon yields compared with values obtained from open crucibles. Large corncob particles offer much higher yields than small particles. These findings show that secondary reactions involving vapor-phase species (or nascent vapor-phase species) are at least as influential as primary reactions in the formation of charcoal.
Our results offer considerable guidance to industry for its development of efficient biomass carbonization technologies. Size reduction handling of biomass (e.g. tub grinders and chippers), which can be a necessity in the field, significantly reduces the fixed-carbon yield of charcoal. Fluidized bed and transport reactors, which require small particles and minimize the interaction of pyrolytic volatiles with solid charcoal, cannot realize high yields of charcoal from biomass. When a high yield of corncob charcoal is desired, whole corncobs should be carbonized at elevated pressure. Under these circumstances, carbonization is both efficient and quick.