Breadcrumb
- Home
- Publications
- Proceedings
- 2012 AIChE Annual Meeting
- Separations Division
- Developments in Extractive Separations II
- (138c) Molecular Dynamics Simulation of Interfacial Water Extraction by TBP/n-Dodecane
Our results indicate that the atomic charges on the TBP molecular model strongly affect water molecule extraction into the organic phase. The charges are systematically varied so to reproduce the experimental dipole moment of the TBP molecule. Higher dipole moments of TBP increase the roughness of the water/organic interface by reducing the interfacial tension. A “rougher” interface increases the interfacial area, and facilitates water hydrogen bonding breaking which is found to be the rate limiting process for water extraction. We have quantitatively characterized the aqueous/organic interface, including: the distribution profiles of water, TBP, and n-dodecane across the interface, the preferential orientation of TBP, and the interfacial coverage by TBP molecules. Moreover, we have conducted extensive MD simulations (~100 ns) on large systems (~360,000 atoms) to obtain the saturated water solubility in the organic phase, which is found to compare well with experiments. Our simulations indicate that water extraction is intricately affected by TBP amphiphilicity, interface topology, dynamics of hydrogen bond breaking, water cluster formation, and temperature.