Breadcrumb
- Home
- Publications
- Proceedings
- 2011 Annual Meeting
- Materials Engineering and Sciences Division
- Challenges In Biomaterial Synthesis
- (511c) Clickable Synthetic Polypeptides As a Tranformable Backbones for Biomaterials
To broaden the range of capabilities possible with the NCA chemistry platform, our research group recently introduced the first NCA polymerized synthetic polypeptides with ‘clickable’ side groups through the introduction of a new NCA polymer, poly(γ-propargyl L-glutamate) (PPLG), which contains a pendant alkyne group that can be reacted with an azide. We were able to demonstrate key advantages to the use of a clickable backbone system with a nearly quantitative post-polymerization functionalization step, including: a) The ability to directly attach functional groups that are ordinarily difficult due to cross-reaction or the need for exhaustive protection-deprotection strategies that greatly lower yield and impact function, including amines, imines, acids, alchohols, thiols and combinations of polar and nonpolar groups that can exhibit mixed charge or function and b) Unusually high grafting-on density with oligomeric grafts in a range of molecular weights, including up to 99% functionalization with polyethylene glycol (PEG) macromolecules up to 5000 daltons. This capability provides an opportunity to create new types of graft copolymers that would not be accessible with other methods to generate biomimetic and bioinspired polymers such as artificial proteoglycans and densely grafted polymers with unique swelling, anti-fouling or pH responsive properties.
Ease of synthesis with both small molecular and macromolecular side groups that exhibit a broad range of polarity and charge provides a key platform for the generation of families of synthetic polypeptides that more directly mimic the adaptive function and responsive behavior of naturally occurring polypeptides while introducing the opportunity to incorporate new function. Examples of the use of this platform from the generation of responsive polymeric micelles that are triggered at key biological pH conditions, and new hydrogel materials, to polymers that can act as native antimicrobial peptides with much lower toxicity will be discussed.