Breadcrumb
- Home
- Publications
- Proceedings
- 2011 Annual Meeting
- Catalysis and Reaction Engineering Division
- Catalyst Deactivation
- (440f) High Throughput Study of Pt-Pd Catalysts for DOC Applications: XRD and STEM Characterization
At Ford, the search for novel catalysts for DOC applications has been conducted by high-throughput synthesis and testing of a variety of materials, including alumina-supported Pt with partial substitution of Pd. Alloying of Pt with other metals such as Pd has been shown to inhibit particle growth, particularly that of anomalously large particles, under high-temperature lean conditions without excessively degrading NO oxidation activity, but the mechanisms underlying this thermal stabilization remain unknown.
This presentation focuses on high-temperature x-ray diffraction (XRD) of alumina-supported Pt and Pt-Pd bimetallic catalysts. For example, under lean aging conditions, XRD shows that average particle size grows as a power-law in time. The fact that this growth rate follows Arrhenius behavior allows us to combine time and temperature into a single “exposure” variable. These and other findings are considered along with scanning transmission electron microscopy (STEM) results to provide a somewhat more complete picture of the particle coarsening processes at work in these catalysts.