Breadcrumb
- Home
- Publications
- Proceedings
- 2011 Annual Meeting
- Catalysis and Reaction Engineering Division
- Nanoscale Materials as Catalysts I
- (40b) High Oxygen Reduction Activity From Electroless Co-Deposition of Ag and MnOx Nanodomains On Carbon
In this work a new electroless co-deposition scheme is developed whereby Ag and MnO2 are co-reduced on vulcan carbon support for oxygen reduction in alkaline media. By employing the surface specific, limited reaction between the redox pairs of potassium permanganate/carbon and Ag/MnOx, thin domains of manganese oxide and Ag nanoparticles (<5nm) were deposited uniformly over the carbon surface. The Ag-MnO2/C composite displays a mass activity of 0.98 A/mg), close to that of Pd/C (0.11A/mg) and 36% higher that MnOx/C (0.072 A/mg). Furthermore, the onset potential for oxygen reduction is 15 mV positive that of Pd/VC, suggesting facile kinetics. Mechanistically, the origin of the activity enhancement for Ag-MnOx/C is shown to result from fast kinetics for the chemical disproportionation of the superoxide anion (HO2-), an ORR intermediate formed by the partial 2 electron reduction of oxygen. The chemical compositions of the catalysts were determined with X-ray photoelectron spectroscopy and energy dispersive spectroscopy. Catalyst morphology was examined with high resolution electron microscopy to better understand the relationship between the catalyst structure and composition with respect to activity.