Breadcrumb
- Home
- Publications
- Proceedings
- 2011 Annual Meeting
- Engineering Sciences and Fundamentals
- In Honor of Jan Sengers' 80th Birthday I
- (226f) Evolving the SAFT-VR Equation of State Into a General Modeling Platform for Complex Fluids
In the spirit of SAFT-VR, we have embarked on a series of modifications of the EOS that are based on the same principles as the original theory. Using the results of modern critical phenomena, we incorporated crossover near the critical point.3 By using the results of perturbation theory for hard sphere mixtures, we developed a hetero-SAFT-VR, enabling the modeling of heteronuclear chains,4 which also makes it possible to model branched chain fluids. Drawing on the results of liquid state theory for mixtures of ions and dipoles,5 we replaced the HS-SW monomer with ionic HS-SW and dipolar HS-SW monomers, enabling SAFT-VR to now describe such complex fluids as electrolytes in solution and ionic liquids.6 Combining all of these elements has made it possible to develop a group-contribution version of SAFT-VR that retains the essential elements of the original SAFT-VR: that is, transferability of parameters (i.e., parameters for groups need only be fitted once) and connection to a physical model that can be simulated in order to verify the accuracy of the theory.7 The result is a general, molecular-based modeling platform applicable to a wide complex fluid systems.
References
1 Wertheim, M. S., Journal of Statistical Physics, 35, 19--34 (1984); Wertheim, M. S., Journal of Statistical Physics, 35, 35--47 (1984); Wertheim, M. S., Journal of Statistical Physics, 42, 459--476 (1986); Wertheim, M. S., Journal of Statistical Physics, 42, 477-492 (1986).
2 Chapman, W. G., Gubbins, K. E., Jackson, G. and Radosz, M., Fluid Phase Equil., 52, 31-38 (1989); Chapman, W. G., Jackson, G. and Gubbins, K. E., Mol Phys, 65, 1057-1079 (1988).
3 McCabe, C. and Kiselev, S. B., Fluid Phase Equilib., 219, 3-9 (2004); McCabe, C. and Kiselev, S. B., Ind. Eng. Chem. Res., 43, 2839-2851 (2004); Sun, L. X., Zhao, H. G., Kiselev, S. B. and McCabe, C., Fluid Phase Equilib., 228, 275-282 (2005); Sun, L. X., Zhao, H. G., Kiselev, S. B. and McCabe, C., J. Phys. Chem. B, 109, 9047-9058 (2005).
4 McCabe, C., Gil-Villegas, A., Jackson, G. and del Rio, F., Mol. Phys., 97, 551-558 (1999); Peng, Y., Zhao, H. G. and McCabe, C., Mol. Phys., 104, 571-586 (2006).
5 Zhao, H. G., Ding, Y. and McCabe, C., J. Chem. Phys., 127, article number 084514 (2007); Zhao, H. G. and McCabe, C., J. Chem. Phys., 125, 4504-4515 (2006).
6 Zhao, H. G., dos Ramos, M. C. and McCabe, C., J. Chem. Phys., 126, 4503 (2007).
7 Peng, Y., Goff, K. D., dos Ramos, M. C. and McCabe, C., Fluid Phase Equilib., 277, 131-144 (2009); Peng, Y., Goff, K. D., dos Ramos, M. C. and McCabe, C., Industrial & Engineering Chemistry, 49, 1378-1394 (2010); dos Ramos, M. C., Haley, J. D., Westwood, J. R. and McCabe, C., Fluid Phase Equilib., in press, (2011); dos Ramos, M. C. and McCabe, C., Fluid Phase Equilib., in press, (2011).