2010 Annual Meeting

Session: Dynamics and Modeling of Particulate Systems I

The session will focus on the advancement of chemical engineers ability to understand, predict, design, and thus optimize particulate systems. Advances in experimental methods, numerical simulations and granular theories have the potential to improve nucleation and aggregation/agglomeration/coalescence dynamics in particulate systems (including solid/liquid and solid/gas) and thus control size and topography (e.g., fractal dimension) of products. Increasing computational power and new numerical/analytical techniques from Applied Mechanics have allowed for increasingly complex particulate systems to be modeled and have set the stage for future work in such diverse areas as mixing/segregation, granulation, fluidization, and pneumatic conveying, to name but a few.

Chair

James Gilchrist, Lehigh University

Co-Chair

Kimberly H. Henthorn, Rose-Hulman Institute of Technology

Presentations

08:30 AM

08:50 AM

Christine M. Hrenya, Peter P. Mitrano, Daniel J. Cromer, Michael S. Pacella, Steven R. Dahl

09:10 AM

J. J. McCarthy, Adel F. Alenzi, Tathagata Bhattacharya

09:30 AM

Madhusudhan Kodam, Rahul Bharadwaj, Jennifer Sinclair Curtis, Bruno C. Hancock, Carl R. Wassgren

09:50 AM

10:10 AM

Richard D. LaRoche, John Favier, Wai Sam Wong, Stephen Cole

10:30 AM

Tuhin Sinha, Bruno C. Hancock, Jennifer Sinclair Curtis, Carl R. Wassgren