Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Particle Technology Forum
- Fundamentals of Fluidization - II
- (97d) Benchmark Data and Analysis of Dilute Turbulent Fluid-Particle Flow in Viscous and Transitional Regimes
For all particle sizes, Re, and solids concentrations the mean fluid velocity profile is very similar in shape to that of the single-phase fluid. The slip between the fluid and 0.5 mm particles is very small. The 1.0 mm particles exhibit an increase in slip as solids concentration increases. The fluctuating velocity measurements show trends characteristic of both collision-dominated and viscous-dominated flow, clearly showing the flow is in a transitional regime. In all cases, the effects of changing the Re are greater than the effects of changing the concentration of solids. There is a reduction in turbulence of both phases across the pipe with increasing Re. However, at the highest Re there is an increase in both fluid and solid turbulence, which can be explained by an increase in vortex shedding at Rep > 300.
The solid fluctuating velocity of the 1.0 mm particles is significantly greater than that of the 0.5 mm particles for all conditions. At each respective Re, the solids fluctuations for the 1.0 mm particles are greater than those of the fluid in their presence, except very near the wall where they become similar. Conversely, the solids fluctuations for the 0.5 mm particles are less than those of the fluid in their presence. The difference in turbulence between the two phases decreases with increasing Re. The turbulence of both phases becomes increasingly flat near the center of the pipe with increasing Re and solids concentration. This is in agreement with the flat profiles of both fluid and solid turbulence in inertia-dominated gas-solid flows. In general, the 0.5 mm particles damp the fluid turbulence while the 1.0 mm and 1.5 mm particles are either neutral or enhance the turbulence. These data give insight into the fluid-particle interactions over a wide range of flow conditions.