Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Computing and Systems Technology Division
- Systems Engineering Approaches in Biology and Biomedicine
- (714a) Optimal Experimental Design for Isotopic Tracing Experiments of Tumour Metabolism
Nevertheless, measurement of isotopomers distributions possibly requires a combination of different methodologies resulting in very expensive and time-consuming tasks. Furthermore, the efficiency of the subsequently constructed models and, obviously their predictive capabilities largely depend on the substrates labeled, the initial labeling and the metabolites, intermediates, products and isotopic isomers measured. For this purpose classical sensitivity analysis and experimental design-oriented techniques could be of immense help. In this work we exploit a recently developed methodology [3] based on the Proper Orthogonal Decomposition technique [4] which is used directly as a novel sensitivity analysis tool, essentially coupling model reduction and optimal experimental design to identify metabolites as well as families of isotopomers exhibiting different levels of sensitivity for different experimental conditions/different cells. This information is used as a tool to effectively guide experimental isotopomer measurements. The relevance of this methodology is investigated for isotopic labeling kinetic models spanning a range of initial labeling conditions as well as different labeled substrates and experimental guidelines are extracted. Furthermore, the applicability of this method to compute optimal time points at which (after starting the incubation with labelled substrates) the samples should be taken is discussed.
References
[1] Vizán P, Sánchez-Tena S, Alcarraz-Vizán G, Soler M, Messeguer R, Pujol MD, Lee WN, Cascante M. (2009). Carcinogenesis 30:946-52.
[2] Selivanov VA, Marin S, Lee PW, Cascante M. (2006) Bioinformatics 22:2806-12. Epub 2006 Sep 25. PubMed PMID: 17000750.
[3] Alana J., Theodoropoulos C. (2010) Comput. Chem. Eng. http://dx.doi.org/10.1016/j.compchemeng.2010.04.014