Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Particle Technology Forum
- Agglomeration and Granulation Processes
- (6e) Using Roller Compaction in a Continuous Tablet Manufacturing Process
The active pharmaceutical ingredient, acetaminophen (APAP), and excipients, including microcrystalline cellulose (MCC), magnesium stearate (MgSt) and Cal-O-Sil® (SiO2) were selected as the model system to study the roller compaction process. To understand the effect of formulation on ribbon density distribution acetaminophen concentration, microcrystalline cellulose grades, and lubricant levels were changed. The effect of operating conditions on ribbon density distribution was studied by changing the roll force and the feed screw speed to roll speed ratio. Finally, the effect of equipment design was studied by altering the penetration of the feed screw into the slip region of the rolls. A multi-point, non-contact diffuse reflectance near infrared probe was set-up at the outlet of the rolls to interrogate the entire width of the ribbon. Offline envelop density measurements were used to create and confirm a multivariate density calibration model for each formulation. The multi-point spectra were combined together to create density contour maps.
In this work, we show the results of the various experiments to characterize ribbon density distribution. We will also discuss how the variance of ribbon density changes with the scale of scrutiny. Based on the analysis of density variation, a near infrared monitoring strategy will be outlined. Finally, we will offer some general conclusions about how the experimental results can be used and extended to process control.