Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Separations Division
- Membranes for Gas Separations
- (695g) Solubility Selectivity and the Upper Bound
A theoretical explanation for this upper bound was proposed by Freeman (Macromolecules, 32, 375-380, 1999). Assuming diffusion is an activated process and using correlations suggested in the literature for the activation energy and front factor as well as a correlation for solubility, the observed upper bounds are predicted well by adjusting a single parameter related to the dependence of activation energy on molecular size.
While the theoretical expression provides very good estimates of the location of the upper bound, the correlations used in the derivation do not allow a critical evaluation of the influence of intrinsic material properties on transport. For example, the diffusion coefficient correlation lumps the effect of polymer-solvent interaction energy into a single parameter while the solubility correlation omits any influence of molecular size or polymer-penetrant interaction. Moreover, the relationship suggests all materials should lie near the upper bound.
To address these issues, the non-equilibrium lattice fluid theory is used to develop a relationship between solubility selectivity and solubility. This relationship is combined with the diffusivity selectivity relationship of Freeman to evaluate the selectivity-permeability tradeoff. For a given gas pair, the results are expressed solely in terms of the material properties of the polymer. By varying polymer properties, the predicted selectivity-permeability combinations are shown to lie along or below an upper bound established by materials with the largest known cohesive energy densities. Other molecular theories of solubility give similar results.