Biodiesel production and its glycerin byproduct have increased in recent years in response to rising demands for renewable and greener fuel technologies. While glycerin has beneficial properties for a variety of end uses, its over-abundance in the market place has rendered a new challenge of finding other economically viable and sizable uses for this commodity. An experimental feasibility study of the novel conversion of glycerin into hydrogen via non-catalytic reformation using supercritical water was conducted in a 400-mL tubular reactor constructed of Haynes Alloy 230. The evaluated parameters for the novel reaction process included water-to-glycerin molar ratios ranging from 3 to 24 using the Haynes Alloy 230 reactor without a liner and with a Nickel 201 liner. For one study, the reactor temperature was kept at approximately 873 K and 973 K for another. The space time for both studies was maintained at approximately 100 seconds. The effects of varying water-to-glycerin molar ratio and reactor liner materials upon gaseous hydrogen production as well as on the overall process chemistry were evaluated.