Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Computing and Systems Technology Division
- Data Analysis: Design, Algorithms & Applications
- (531f) Fuzzy Model Clustering (FMC) Algorithm for Multiple Model Learning
In this paper, an alternate model clustering approach to solve this problem is presented. In a traditional clustering approach, the cluster centers accumulate data points through a Euclidean distance based membership. The analogous clustering formulation in multiple model estimation is to let models accumulate data points through a prediction error based membership. This leads to the novel model clustering approach that is proposed in this paper. A similar approach based on residual error is proposed by Frigui and Krishnapuram [11], where a Multiple-Model General Linear Regression (MMGLR) algorithm is used for estimation of multiple models. The authors have modified the fuzzy clustering objective function to avoid over-estimation of data with too many models. The model update in their formulation is a modified least squares update. In the proposed formulation, the model update is based on steepest gradient method and steplength of the update is optimal in the given search direction. Since the proposed formulation is in terms of model parameters, the models migrate in an abstract model space to capture original models. This avoids over-estimation of models. The approach does not need any prior information on the number of models, the model orders and the model parameters. Moreover, the proposed formulation has minimal tuning parameters. The proposed approach identifies contiguous and non-overlapping regions in which different linear dynamic models operate. The efficacy of the proposed approach will be demonstrated on several example systems. The advantages of the proposed approach over the existing approaches will also be discussed.
References:
1. V. Cherkassky and Y. Ma, ?Multiple model regression estimation,? IEEE Trans. Neural Networks, vol. 16, pp. 785?798, 2005.
2. J. Roll, A. Bemporad, and L. Ljung, ?Identification of piecewise affine systems via mixed-integer programming,? Automatica, vol. 40, pp. 37?50, 2004.
3. A. Skeppstedt, L. Ljung, and M. Millnert, ?Construction of composite models from observed data,? International Journal of Control, vol. 55, pp. 141?152, 1992.
4. G. Ferrari-Trecate, M. Musellic, D. Liberatid, and M. Morari, ?A clustering technique for the identification of piecewise affine systems,? Automatica, vol. 39, pp. 205?217, 2003.
5. H. Nakada, K. Takaba, and T. Katayama, ?Identification of piecewise affine systems based on statistical clustering technique,? Automatica, vol. 41, pp. 905?913, 2005.
6. N. Venkat, P. Vijaysai, and D. Gudi, ?Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space,? Journal of Process Control, vol. 13, pp. 473?488, 2003.
7. N. Venkat and D. Gudi, ?Fuzzy segregation-based identification and control of nonlinear dynamic systems,? Ind. Eng. Chem. Res., vol. 41,pp. 538?552, 2002.
8. R. Vidal, ?Recursive identification of switched arx systems,? Automatica, vol. 44, pp. 2274?2287, 2008.
9. F. Dufrenois and D. Hamad, ?Fuzzy weighted support vector regression for multiple linear model estimation : application to object tracking in image sequences,? in Proc. Int. Joint Conf. Neural Networks, Orlando, Florida, USA, August 2007, pp. 1289?1294.
10. X. Jin and B. Huang, Robust identification of piecewise/switching autoregressive exogenous process, AIChE Journal, Published online.
11. H. Frigui and R. Krishnapuram, A robust competitive clustering algorithm with applications in computer vision, IEEE transactions on pattern analysis and machine intelligence, vol. 21, pp. 450-465, 1999.
12. F. Klawonn and F. Hoppner, Advances in Intelligent Data Analysis V, SpringerLink, 2003.
13. L. Gröll and J. Jäkel, ?A new convergence proof of fuzzy c-means,? IEEE Trans. Fuzzy Systems, vol. 13, pp. 717?720, 2005.