Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Particle Technology Forum
- Magnetic Particle Synthesis and Properties
- (471c) Precise Magnetic Manipulation of Anisotropic Microcylinders
To obtain micron-sized anisotropic particles with highly defined magnetic compartments, we employed electrohydrodynamic (EHD) co-jetting, a method recently reported for the preparation of multicompartmental microcylinders [Angew. Chem. Int. Ed. 2009, 48, 4589?4593; JACS, 131, 19, 6650?6651]. Here we expand this initial work to prepare magnetic anisotropic microcylinders/disks with different magnetic compartmentalization. Moreover, this technological approach enabled preparation of multicompartmental particles with a range of different aspect ratios. First, to confine a specific magnetic compartmentalization in this study, a magnetite (Fe3O4, 30nm in diameter) suspension in a polymer solution (poly(lactide-co-glycolide), PLGA) was introduced into correspondingly configured jetting fluids in the process of EHD co-jetting. Following cryo-sectioning of the microfibers with diameters between 20 - 25 µm, anisotropic microcylinders/disks with different magnetic compartments were readily available.
Associated for controlling MJPs' directionality, a single external magnet is used to rule various conventional rotational motions of magnetic Janus microcylinders/disks, which is very simple to be useful for a practical application. A flipping motion of magnetic Janus microcylinder against the dipole axis is also achieved by applying a second magnetic field. Dissimilarity in rotational and translational behaviors between MJPs with two different aspect ratios were observed under the same magnetic field directions; probably due to shape and size differences. Difference in shape anisotropy between magnetic Janus microcylinders and microdisks caused self-assembly into staggered chain forms in a different way. Finally, by utilizing the fact that shape and size anisotropy of MJPs results in different magnetic rotational locomotion, a simple separation process between magnetic Janus microcylinders and microdisks was demonstrated.