Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Engineering Sciences and Fundamentals
- Interfacial Flows and Stability II
- (469h) Control of Flame Instabilities Via Oscillating Electric Fields
Here, we described one such approach based on oscillating electric fields applied to the flame. The approach is based on the perspective that flames can be considered not only as the hot, gaseous products of an exothermic oxidation process but also as weakly ionized, nonequilibrium plasmas ? which include electrons, molecular ions, and various charged carbonaceous particles (i.e., soot) created as chemical byproducts of the combustion process. The movement of these charged species under the action of an appropriate electric field can couple to the hydrodynamic flow field surrounding the flame boundary, thereby enabling one to shape, deflect, and even extinguish the flame. We demonstrate how such field-induced flows can be used to stabilize lab-scale flames and discuss the mechanism controlling flame stability.