Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Particle Technology Forum
- Applications of Fluidization
- (384c) Discrete Particle Simulations of Micro-Jet Assisted Fluidization of Nanoparticulate Agglomerates
To obtain a better insight into the working of the micro-jet, we have simulated the system using a discrete particle model (DPM). We have chosen to represent each agglomerate by a single particle having the average agglomerate size and density to reach reasonable computation times. In the DPM, the individual trajectory of each particle is determined by approximating Newton's second law of motion. The forces acting on each agglomerate are gravity, the traction force of the fluid phase, and the force resulting from the interaction with other agglomerates. The motion of the fluid phase is determined from the volume averaged governing equations in an Eulerian framework. A qualitative comparison has been made between the simulation results and previous experimental results. The simulations indicate that the largest contribution to the agglomerate size reduction seems to come from agglomerate-agglomerate collisions: the collisional stress in the zone below the jet is one to two orders of magnitude larger than for the case without a jet.
[1] Quevedo, J.A., Omosebi, A., Pfeffer, R., 2010. Fluidization enhancement of agglomerates of metal oxide nanopowders by microjets, AIChE Journal, in press.