Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Computing and Systems Technology Division
- Planning and Scheduling II
- (356f) On Computational Performance of Big-M Formulations in Scheduling of Multipurpose Batch Plants
Refrences
Castro, P. M., Barbosa-Povoa, A. P.F.D., Matos, H. A., Novais, A. Q., 2004. Simple continuous-time formulation for short-term scheduling of batch and continuous processes. Ind. Eng. Chem. Res.,43, 105-118.
Floudas, C.A., Lin, X., 2004. Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review, Comput. Chem. Eng., 28, 2109-2129.
Giannelos, N. F., Georgiadis, M. C., 2002. A Simple new continuous-time formulation for short- term scheduling of multipurpose batch processes. Ind. Eng. Chem. Res., 41, 2178-2184.
Ierapetritou, M. G., Floudas, C. A., 1998. Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes. Ind. Eng. Chem. Res., 37, 4341-4359.
Kondili, E., Pantelides, C.C., Sargent, R.W.H., 1993. A general algorithm for short-term scheduling of batch operations - I. MILP formulation. Comput. Chem. Eng.,17(2), 211-277.
Majozi, T., Zhu, X.X., 2001. A novel continuous-time MILP formulation for multipurpose Batch plants. 1. Short-term scheduling. Ind. Eng. Chem. Res., 40 (25), 5935?5949.
Majozi, T., Friedler, F., 2006. Maximization of throughput in a multipurpose Batch Plant under fixed time horizon: S-graph approach. Ind. Eng. Chem. Res.,45 (20), 6713?6720.
Maravelias, C. T., Grossmann, I. E., 2003. New general continuous-time state-task network formulation for short-term scheduling of multipurpose Batch plants. Ind. Eng. Chem. Res., 42, 3056-3074.
Shaik, M. A., Floudas, C. A., 2009. Novel unified modelling approach for short-term scheduling, Ind. Eng. Chem. Res., 48, 2947-2964.
Sundaramoorthy, A., Karimi, I. A., 2005. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose Batch plants. Chem. Eng. Sci., 60, 2679-2702.