Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Engineering Sciences and Fundamentals
- Interfacial Phenomena in Ionic Liquids
- (227e) Aluminum as a Secondary Battery Anode Material Electrodeposited From Ionic Liquids
The aluminum electrodeposition on copper current collectors from two different types of ionic liquids, 1-butyl-3-methyl imidazolium chloride and 1-ethyl-3-methyl imidazolium chloride, has been studied. Under galvanostatic electrodeposition from BMIM-chloraluminate melts, it was found that bright, adherent aluminum was obtained in the range of 0.2 - 1 mA/cm2. Above 1mA/cm2, mixed depositions results with non-adherent complexed organic material were obtained. Potentiostatic deposition resulted in bright, smooth and adherent deposits in the range of -0.05 V to -0.4 V vs Al. Beyond -0.4 V, the freshly deposited Al reacts further resulting into non-adherent complexed material.
Upon cycling in the appropriate current density range, current efficiencies of 50-70% were observed. Upon repeated cycling, this efficiency was observed to 100 cycles and beyond. Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) analysis was used to characterize the deposits. The SEM/EDX analysis indicated the deposits were pure aluminum.
These results were repeated with EMIM-based electrolyte melts, providing insight into the effect of ionic liquid cation on battery anode performance.