Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Engineering Sciences and Fundamentals
- Poster Session: Thermodynamics and Transport Properties
- (191h) Simulation of the Release of Non-Condensable Gases in Seawater Evaporation
A multi-phase model of sea water applicable for the simulation of desalination processes in elevated temperatures was developed in this study. The thermodynamic model was based on the published Pitzer parameters. The applicability of the model was evaluated for a multi-stage flash (MSF) desalination process. The multi-phase system of sea water typically includes species of Na, Ca, K, Mg, Cl, and S. In the present work total of four (4) species in the gaseous phase, thirty-seven (37) species in the aqueous phase, and five (5) solid phases were defined. Process temperatures in the multi-stage flash evaporation range from 110 down to 40 ° C and pressures from 130 kPa down to 10 kPa. The model extrapolates the Pitzer parameters to the evaluated temperatures up to 110 ° C.
The results of the study were promising: the multi-phase model of sea water could predict the CO2 release in evaporation and scale formation due to precipitation. The amount of CO2 released depends on the carbonate reactions in solution. Such reactive processes can in general be described better using multi-phase models rather than equation of state models. The model also predicted the composition of typical scales in MSF process. The results explain the phenomena usually observed in MSF processes, such as need for venting gases and scale formation. The results encourage continuing the development of more precise sea water models at elevated temperatures in order to fully understand the chemical phenomena in MSF and reverse osmosis desalination plants.