2010 Annual Meeting
(168n) The Influence of Polymer Additives On Turbulent Energy Distribution In Fully-Developed Channel Flows
Authors
The mean velocity and pressure fields for turbulent flows of constant property viscoelastic fluids are governed by the continuity equation and the Reynolds averaged Cauchy (RAC-) equation. The RAC-equation is an exact, unclosed equation for the mean velocity. Closure requires a model for the mean Cauchy stress and for the Reynolds stress. In this paper, a recently developed closure for the normalized Reynolds (NR-) stress for turbulent flows of viscous fluids (Koppula, et al., 2009) is extended to turbulent flows of viscoelastic fluids (Virk, 1975; Lyons and Petty, 1985; Brostow, 2008; White and Mungal, 2008). The results are used to predict the influence of polymer additives on the NR-stress in fully-developed channel flows.
References: Brostow, W., 2008, ?Drag Reduction in Flow: Review of Applications, Mechanism and Prediction?, Journal of Industrial and Engineering Chemistry, 14(4), 409-416. Koppula, K.S., A. Bénard, and C. A. Petty, 2009, ?Realizable Algebraic Reynolds Stress Closure?, Chemical Engineering Science, 64, 4611-4624. Lyons, S. and C. A. Petty, 1985, ?Predictions of Turbulent Drag Reduction for a Linear Viscoelastic Fluid?, p. 310 in The Influence of Polymer Additives on Velocity and Temperature Fields, Editor: B. Gampert, 1984 IUTAM Symposium, Essen, Germany, Springer-Verlag. Virk, P. S., 1975, ?Drag Reduction Fundamentals?, AIChE Journal, 21(4), 625-656. White, C. M. and M.G. Mungal, 2008, ?Mechanics and Prediction of Turbulent Drag Reduction with Polymer Additives?, Annual Review of Fluid Mechanics, 40, 235-256.