Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Materials Engineering and Sciences Division
- Nanocrystal Science and Technologies
- (160e) Inorganic Nanocomposite Polymer Particles with Topological, Optical, and Magnetic Anisotropy
To provide multifunctional anisotropy within one particle, two optically and chemically distinctive inorganic nanocrystals [a white colorant, titanium dioxide (TiO2, < 100 nm) and a black pigment, magnetite (Fe3O4, ~10 nm)] were were processed via electrohydrodynamic co-jetting. The two metal oxides were suspended into separate copolymer solutions containing poly(acrylamide-co-acrylic acid), (p(AAm-co-AA)] and ethylene glycol. The EHD co-jetting process yielded bi-compartmentalized nanocomposite spherical particles (464 ± 242 nm), which were subsequently proccessed by thermal crosslinking for stabilization. Because of the difference in size and optical color between TiO2 and Fe3O4, it is possible to differentiate the surface morphology and appearance of two compartments, such that the surface of titanium dioxide is optically brighter than the magnetite region. The result is a surface morphological Janus particle. Finally, the magnetic anisotropy of the particles is utilized to demonstrate control of the particles' positions using an external magnetic field.