Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Engineering Sciences and Fundamentals
- Turbulent Flows
- (126f) Analysis of Velocity PDFs and Higher Order Statistics in Polymer-Modified Channel Flow Turbulence
In the present work we further quantify these polymeric effects on the velocity and velocity derivatives PDFs. For the first time, we focused on the shape of the most pronounced nonGaussian effects, the ?fat? tails. As a result to ?fat? tails, the probability of otherwise characterized as very improbable events (excursions tens of standard deviations away from the mean) become for these particular distributions much more likely and fairly plausible. Whereas before the analysis was based on an ad-hoc standard histogram procedure, which is for these rare events full of noise and ambiguity, we developed here a much more systematic procedure based on an analysis of the cumulative probability functions and on the implementation of rigorous statistical criteria for rare events, like the Hill estimator. We show that, with viscoelasticity and at certain locations near the wall, the PDFs exhibit ?fat? tails falling with a power law and sufficiently slow so that some of their higher moments (above 3) are not even finite. The more general implications of this work to the modeling of viscoelastic turbulence are going to be underlined.
(1) G. Samanta, K.D. Housiadas, R.A. Handler and A.N. Beris, 2009, ?Effects of Viscoelasticity on the Probability Density Functions in Turbulent Channel Flow,? Phys. Fluids, 21: article 115106.