Breadcrumb
- Home
- Publications
- Proceedings
- 2010 Annual Meeting
- Computational Molecular Science and Engineering Forum
- Multiscale Modelling II
- (111f) A Multi-Scale Approach to Modeling Aqueous Electrolyte Mixtures at High Pressure
Adaptation and applications of the multi-scale GHC EOS to weak and strong aqueous electrolyte systems containing salts and mixed salts are described. It is shown that the GHC EOS approach allows the user to model all relevant electrolyte physics (i.e., van der Waals forces, electrostatic forces, mixtures of ions, atoms and/or molecules) at the small length scale and, when done correctly, results in exceptionally good bulk phase densities, phase stability and phase equilibrium predictions. Moreover it removes the need to use either Debye-Huckel or Pitzer theory for modeling electrolyte effects. The computational reliability and efficiency of the multi-scale GHC EOS approach is also discussed with particular attention to the facts that 1) internal energies of departure from NTP Monte Carlo simulations need only be calculated once using small simulation boxes (i.e., small numbers of particles), 2) coarse-graining (i.e., relatively few values of temperature, pressure and composition) can be used, and 3) the resulting internal energies of departure can be used in look-up tables which, together with interpolation formulae, provide fast and reliable communication of information between the molecular and bulk phase length scales.
Numerical results for bulk phase densities, stability and equilibrium for NaCl-H2O, NaCl-KCl-H2O, and NaCl-MgSO4-H2O mixtures are presented over ranges of temperatures, pressures, and compositions relevant to high pressure carbon dioxide storage and are compared to Debye-Huckel theory and Pitzer's approach based on virial expansion and are validated using experimental data. Geometric illustrations are used to elucidate key aspects of our approach.