Breadcrumb
- Home
- Publications
- Proceedings
- 2009 Annual Meeting
- Computing and Systems Technology Division
- Energy and Operations
- (454b) Supervisory Predictive Control of Integrated Wind/Solar Energy Generation Systems
In this work, we present model predictive control methods needed for the optimal management and operation of integrated wind/solar energy systems coupled with a battery bank and dealing with load variability. Specifically, the primary control objective is to manipulate the operating conditions of the wind subsystem and of the solar subsystem to generate enough energy to satisfy the load demand. The second control objective is to optimize the operating conditions to improve the closed-loop performance, to deal with control actuator and/or state constraints and to maximize the life of the battery bank. We design a supervisory predictive control system to achieve the aforementioned control objectives in the context of a representative wind/solar energy generation system. First, two local control systems are designed for the wind subsystem and the solar subsystem, respectively. The two local control systems manipulate duty cycles of DC/DC converters. Based on the two local control systems, a supervisory controller is designed, using model predictive control theory, to optimize the operating set points of the two local control systems to improve the closed-loop performance and to satisfy operating constraints. The proposed control scheme can also take other useful information, such as weather forecast for wind variability and future load changes, into account to optimize the operating conditions.