2009 Annual Meeting
(411d) Carbon Dioxide Capture with Hybrid Nanocomposites
Authors
Genggeng Qi - Presenter, Cornell University
Emmanuel P. Giannelis - Presenter, Cornell University
Ah-Hyung Park - Presenter, Columbia University
An amine functionalized silica nanocomposite was synthesized by a one-pot reaction in the presence of surfactant templates. Carbon dioxide adsorption from a simulated flue gas stream and pure dried CO2 under atmospheric pressure was successfully performed with the hybrid nanocomposite. The captured CO2 can be easily and completely recovered by a purge gas or heating to 50-100 °C. The multi-cycle experiments have shown that the adsorbent has very good stability and regenerability. A high organic loading, up to ~45 wt %, was achieved by the covalently bonding the organic groups to the silica support instead of physical impregnation, and as a result, a large CO2 absorption capacity ( 100mg CO2/g adsorbent) was observed for the absorbent. Results of analytical characterization of the hybrid nanocomposite will also be discussed.