Breadcrumb
- Home
- Publications
- Proceedings
- 2009 Annual Meeting
- Computing and Systems Technology Division
- Advances in Process Control I
- (389f) Distributed Model Predictive Control of Nonlinear Systems Subject to Asynchronous and Delayed Measurements
With respect to available results on distributed MPC design, several distributed MPC methods have been proposed in the literature that deal with the coordination of separate MPC controllers that communicate in order to obtain optimal input trajectories in a distributed manner. All of the above results on distributed MPC design are based on the assumption of continuous sampling and perfect communication between the sensor and the controller. Previous work on MPC design for systems subject to asynchronous or delayed measurements has primarily focused on centralized MPC design and has not addressed distributed model predictive control with the exception of a recent paper which addresses the issue of delays in the communication between the distributed controllers [2].
Motivated by the above considerations, this work focuses on distributed model predictive control of nonlinear systems subject to asynchronous and delayed measurements. In the case of asynchronous feedback, under the assumption that there exists an upper bound on the interval between two successive measurements of the system state, distributed Lyapunov-based model predictive controllers are designed that utilize one-directional communication and coordinate their actions to ensure that the state of the closed-loop system is ultimately bounded in a region that contains the origin. Subsequently, we focus on distributed model predictive control of nonlinear systems subject to asynchronous measurements that also involve time-delays. Under the assumption that there exists an upper bound on the maximum measurement delay, a distributed Lyapunov-based model predictive control design is proposed that utilizes two-directional communication between the distributed MPCs and takes the measurement delays explicitly into account to enforce practical stability in the closed-loop system. The applicability and effectiveness of the proposed control methods are illustrated through a chemical process example.
[1] J. Liu, D. Munoz de la Pena, and P. D. Christofides. Distributed model predictive control of nonlinear process systems, AIChE Journal, vol. 55, pp.1171-1184, 2009.
[2] E. Franco, L. Magni, T. Parisini, M. M. Polycarpou, and D. M. Raimondo. Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: A stabilizing receding horizon approach. IEEE Transactions on Automatic Control, vol. 53, pp. 324-338, 2008.