2009 Annual Meeting
(217d) Microscale Shear Flow of Focal Conic Defects in Layered Liquids
Author
Sourav Chatterjee - Presenter, Carnegie Mellon University
Intermolecular interactions in liquid crystals and concentrated surfactant solutions lead to unique microstructures including lamellae, in which parallel layers are incompressible but bend easily. In such systems, planar layers are easily destabilized via external fields and nearby surfaces to produce topological defects of the order of tens of microns in size. These microscopic defects play a leading role in the flow behavior of such materials, and therefore impact numerous industrial applications including optoelectronic devices and displays and the processing of coatings, adhesives, and biomaterials to encapsulate drugs. To examine the interaction between such microscale defects and flow, we have developed a shear cell to impose a linear Couette flow in a microscale thin gap, while allowing for real time microscopic visualization. We use the shear cell to visualize the dynamics of defect formation in initially defect-free samples of a common small-molecule thermotropic liquid crystal, 8CB. We observe that the formation of focal conic defects, a specific topological defect typically found in thermotropic smectic liquid crystals, is triggered by edge effects and occurs in a series of phases, marked by distinct changes in the birefringence intensity. The defects are seen to annihilate partially or completely on reverse shear. The effect of shear rate and strain amplitude on defect formation and annihilation is studied.