Breadcrumb
- Home
- Publications
- Proceedings
- 2009 Annual Meeting
- Catalysis and Reaction Engineering Division
- Catalytic Hydrogen Generation - General I
- (192b) Enhanced Sulfur Tolerance of Ni-Rh Alloys for Reforming and Methanation Reactions
The overall hydrocarbon reforming reaction encompasses several reactions leading to H2, CH4, CO, CO2, and other products. The methane formation reaction is most sensitive to sulfur poisoning. Therefore, investigation of methane formation is initially chosen to elucidate the improved tolerance against sulfur poisoning with Ni addition to Rh. There are two routes for methane formation in hydrocarbon reforming: the methanation of the CO product by the H2 product and through C-C bond cleavage of higher hydrocarbons. The rate determining step for the first route is the dissociation reaction of CO on the catalyst surface. For two reasons, we have to look into the CO dissociation reaction in the presence of sulfur on the catalyst surface to understand the effect. The experimental XPS and TPR results suggest an intimate Ni-Rh interaction and EXAFS results indicate alloying of Ni and Rh in catalyst nanoparticles. Density functional theory (DFT) was used to model the (111) surface of Ni-Rh alloys at varying composition. Ni-Rh surfaces show weakened binding of S compared to the component pure Rh. Sulfur has less of an impact on the CO adsorption energy and dissociation barrier on Ni-Rh alloys, providing for a CO dissociation rate three orders of magnitude greater in the presence of sulfur over the alloys compared to the pure metals.