Breadcrumb
- Home
- Publications
- Proceedings
- 2009 Annual Meeting
- Computing and Systems Technology Division
- Energy Systems Design and Alternative Energy Sources
- (143d) Power System Design for a Hybrid Fuel Cell Vehicle: A Globally Optimal Approach
Due to the drive cycle expected during vehicle operation, the proposed design scheme should include power demand variability as an underlying element. It is further recognized that a high level controller is needed to coordinate device interactions as well as ensure that demanded power is sent to the electric motor driving the vehicle. Clearly, the characteristics of this high level controller will influence the required size of each device. As such, controller characteristics have been included as design variables. Additional design criteria include; max power and energy density for each type of device, losses associated with energy conversion, friction losses, the impact of device size on vehicle mass and overall power demand.
Concerning computational issues, we will show that nearly all of the nonlinear constraints discussed above can be converted to a convex form. The exception is a limited set of scalar reverse-convex inequalities, used to define the relation between variance and standard deviation for key process variables. Given this convex / reverse-convex form a computationally efficient branch-and-bound algorithm has been developed to obtain globally optimal solutions to the proposed hybrid vehicle design problem.