Breadcrumb
- Home
- Publications
- Proceedings
- 2009 Annual Meeting
- Computational Molecular Science and Engineering Forum
- Recent Advances in Molecular Simulation Methods I
- (113a) Coarse-Grained Lattice Monte Carlo Simulations of Continuous Systems
In this presentation, we discuss a new technique for performing Metropolis Monte Carlo (MMC) simulations of continuous systems on coarse rigid lattices, while preserving the phase-space contributions of the missing degrees-of-freedom. Previous Metropolis Monte Carlo modeling studies have shown that lattice representations are able to correctly capture the phase behavior of continuous fluids if the discretization is sufficiently fine [3], but the potential computational gains are limited by the required lattice resolution. The present approach relies on the pre-computation of coarse-grained potentials from equilibrium sampling of small systems. The potentials are generated in such a way so as to be scalable to different temperatures without the need for a new set of calculations. It is shown that the approach is able to capture both equilibrium (such as phase diagram features) and non-equilibrium (transport) features of the continuous system, even when the rigid lattice becomes highly coarse.
The approach then is extended to lattice kinetic Monte Carlo (LKMC) simulations by developing a method to map particle motions in a continuous system onto a finite set of discrete rate expressions. Both accuracy and performance are discussed with examples based on the Lennard-Jones potential.
[1] S. S. Kapur, M. Prasad, J. C. Crocker, T. Sinno, Role of configurational entropy in the thermo-dynamics of clusters of point defects in crystalline solids, Phys. Rev. B 72, 014119 (2005).
[2] J. Dai, W. D. Seider and T. Sinno, Lattice kinetic Monte Carlo simulations of defect evolution in crystals at elevated temperature. Molecular Simulation, 32, 305 (2006).
[3] A. Z. Panagiotopoulos, On the equivalence of continuum and lattice models for fluids. J. Chem. Phys., 112, 7132 (2000).