2008 Annual Meeting
(752a) Study on Aggregation of Gold Nanoparticles by Tuning the Surface Properties
Authors
In this study, the particle size is first tuned by the addition of inert filler during the formulation. By varying the amount of PCL homopolymer, the size of the gold nanoparticle changed from 60 to above 200 nm. However, estimation of the particle size for any given solute and need for the formulation of even smaller particles make it imperative to fully understand the aggregation kinetics of the solutes. The study provides a starting point for the development of a correlation between the aggregation kinetics of the colloids and their surface properties. We tuned the sticking probability of the gold colloids by using both ionic and non-ionic surfactants. Ionic surfactants including SDS and TDTAB have been used to characterize the surface properties of the gold colloid. The anionic surfactant, SDS, was found to be better stabilizing agent compared to the cationic surfactant. The nanoparticle size is then tuned by varying the concentration of the surfactant and thereafter the stabilizing effect of the block copolymer, PEO-b-PS (3k-b-1k) on the assembly has been analyzed.
The experiments are analyzed by comparing them with an aggregation model that solves the population balance equations (PBEs) as functions of mixing time and physical properties of the inlet streams. In this work, a multivariate population balance model is developed to account for the copolymer arresting and stabilizing particle growth mechanisms in the NanoPrecipitation process. In order to achieve more economical computation, the quadrature method of moments (QMOM) is applied to solve PBEs in this model. The QMOM transforms the PBE into a set of lower moment equations, which contain useful information regarding the particle size, surface area, solid volume, and mean particle size. As a result, instead of solving the particle size distribution (PSD), QMOM requires less computation and has proven a good numerical approach in terms of its efficiency and accuracy.