2008 Annual Meeting
(718f) Mechanism of the Diesel PM Removal by Dielectric Barrier Discharges
Authors
The PM samples were collected from the exhaust gases of a diesel engine. A lab-scale DBD reactor was used to generate plasma discharge. This DBD reactor consists of two pieces of flat alumina plates, two pieces of aluminum flat plates and spacers. Several parallel grooves are engraved on one side of each alumina plate. Each aluminum plate is placed on the flat side of the alumina plates. Each two alumina plates of grooves on their surfaces are assembled face to face, and between which the spacers are inserted to form discharge spaces. The aluminum plates are connected to the output side and earth terminal of a high-voltage pulse power supply. A mixture gas of PM, H2O, N2 and O2 was introduced to the discharge spaces of the DBD reactor. PM removal ratios were calculated from concentrations of PM oxidation products (CO and CO2) in the gas from the DBD reactor using gas chromatographs. After plasma discharges, PM samples were collected and analyzed using XPS to find the changes of carbon bonding ratios. The oxidation of PM (before and after plasma discharges) with O3 was also measured by using a thermo gravimetric analyzer.
It was found that the ratio of sp2 bonding carbon in the PM sample decreased while the ratio of sp3 bonding carbon increased after plasma discharges. This finding suggested that the active oxygen species generated by plasma discharges reacted with the sp2 bonding carbon to form sp3 bonding carbon. On the other hand, the ratio of sp3 bonding carbon decreased while the ratio of sp2 bonding carbon increased after the reaction with O3. This fact implied that PM is further oxidized by O3 from the sp3 bonding carbon to CO and CO2. The detail mechanism of plasma PM removal and the further development of this technology will be given.
This work was supported by the New Energy and Industrial Technology Development Organization, Japan.