2008 Annual Meeting
(699f) Spinneret Design in Fabricating Ultra-Thin Defect-Free and Macrovoid-Free Hollow Fiber Membranes for Gas Separation
Authors
As for the morphological aspect, four types of macrovoids (i.e. inward- and outward-pointed, elliptical, and tear-drop shapes) can be observed simultaneously in the P84 copolyimide hollow fiber membranes. Hollow fibers spun from thinner spinneret annulus gaps show only inward-pointed long, tear drop, and elliptical shape macrovoids, while those spun from thicker annulus gaps have both inward and outward-pointed macrovoids. In addition, the number of inward-pointed macrovoids increases, while the number of outward-pointed macrovoids decreases with an increase in air gap distance. In terms of the effect of spinneret dimension in the formation of hollow fiber membranes for gas separation, defect-free Torlon® hollow fiber membranes with ultra-thin dense selective layers have been successfully fabricated without any post treatments. It is observed that narrower annular gap of the spinneret facilitates the formation of macrovoid-free hollow fibers, while broader one produces membranes with higher permselectivity and thinner dense selective layer. The highest ideal O2/N2 permselectivity is 9.06, with a dense layer of 540 Ǻ. The average selectivity of CO2/CH4 mixed gas is around 40.
This is a pioneer work in studying the effect of spinneret dimension in the formation mechanism of hollow fiber membranes. Besides providing an integrated understanding of elongation induced molecular orientation and shear induced molecular orientation in different spinnerets for hollow fiber formation, it is also believed our idea in spinneret design may start a new step in improving hollow fiber performance, not only for gas separation but also for all industrial applications.