2008 Annual Meeting
(688d) Data Driven Neural Netowrk Based Models of Ro Desalination Plant Operation and Ro Membrane Performance
Authors
The current approach is providing the basis for developing and incorporating neural network data-driven models in a control strategy and early-warning system of the deterioration of RO plant performance. In this regard, the passage of organics through RO membranes is particularly critical for applications that involve RO membranes in water treatment plants. Neural network models can be effective in generating Quantitative Structure-Property Relations (QSPR) for the organic passage (P), sorption (S) and rejection (R) using the most relevant set of molecular descriptors. In the present work, the approach was demonstrated based on an experimental data set of fifty organics with four different RO membranes. A number of feature selection methods were employed. Pre-screening was carried out, with Principal Components Analysis and SOM of the chemical domain for the study chemicals, as defined by chemical descriptors, to identify the applicability domain and chemical similarities. The QSPR models predicted organic passage, rejection, and sorption within the range of the standard deviations of measurements for the experimental data set of fifty compounds. The application for the approach for compounds of interest, for which experimental data were not available, demonstrated reasonable mass balance closures. The implications of the above approaches will be discussed with respect to the development of a comprehensive tool for assessing RO plant performance in RO water treatment processes.