2008 Annual Meeting
(572h) Modeling Drug Delivery for Design of PLGA Microparticles
Authors
This poster describes the use of the mechanistic model to optimally design biodegradable polymeric microparticles for controlled release, which can be made reproducibly by the precision particle fabrication technique that yields highly uniform distributions with tight control of the specific sizes and thicknesses of core-shell microparticles and microcapsules. Changing the design variables of core diameter and shell thickness along with the distribution of molecular weights and pore sizes enables the design of microparticles to produce a large spectrum of obtainable release profiles. These profiles include zeroth-order release and pulsatile release with a range of shapes for the individual pulses. The model also determines the pH as a function of position within the microparticle, which can be used to design microparticles that limit the pH to ranges in which the released molecule is stable. The model can also be used to compute an optimal distribution of microparticles, which can be relevant when restrictions are placed on the microenvironment within the microparticles, such as limits to the pH.