2008 Annual Meeting
(390e) Chelate-Modified Hydroxyl Radical Reactions for Detoxification of Chlorinated Organics: Experimental Results and Model Development
Authors
In addition to experimental data, we have modeled the effects of the chelate:Fe ratio on contaminant degradation and hydrogen peroxide consumption. The chelate reduces the amount of Fe(II) available in the solution phase for reaction with hydrogen peroxide, affecting the production of hydroxyl radicals. The generation of these, as well as other, radicals determines the rate of degradation of TCE in the aqueous phase and the rate of disappearance of TCE DNAPLs (present in droplet form). Many remediation strategies have successfully degraded TCE present in the aqueous phase, only to experience a rebound from the dissolution of the DNAPL. In order to degrade the contaminants present in an efficient manner, it is necessary to develop a model to predict the degradation of contaminants dissolved in the aqueous and non-aqueous phases. This model is comprised of free radical concentrations and iron species distributions obtained by simultaneously solving equilibrium equations for Fe-chelate interactions and rate laws associated with pertinent hydroxyl radical reactions.
Support of this research has been provided by NSF-IGERT, NIEHS/SBRP, and DOE-KRCEE.