Breadcrumb
- Home
- Publications
- Proceedings
- 2008 Annual Meeting
- Computing and Systems Technology Division
- Dynamic Simulation & Optimization
- (343g) A Decomposition Approach to Optimal Operation of Fermentation Processes
The aim of the optimization is the maximization of the product total amount per time while minimizing the start-up period. To keep the production costs at a convenient level, different constraints are included in the optimization problem such as a glucose waste limit, a lower bound for the outlet product concentration and also technical constraints which involve upper bounds for the biomass concentration in the reactor. Previous to the numerical optimization and based on experimental results, several model parameters were adjusted using robust dynamic simulation (discretization by five orthogonal collocation points) in combination with parameter estimation methods. For the simulation and computation of the sensitivities, we propose a new multiple-time-scaling-approach to solving the resulting optimization problem which possesses strong nonlinear properties.