2008 Annual Meeting
(274b) Effect of Reaction Temperature on the Performance of Thermal Swing Sorption Enhanced Reaction Process for Simultaneous Production of Fuel Cell Grade H2 and Compressed CO2 from Synthesis Gas
Authors
The present work reports (a) new experimental data demonstrating the concept of sorption enhanced WGS reaction at different temperatures using a commercial WGS catalyst and Na2O promoted alumina as the CO2 chemisorbent, and (b) the effect of the sorption-reaction temperature on the TSSER process performance estimated by model simulation. Relatively slower kinetics of the sorption-enhanced WGS reaction imposes a lower bound (~ 200 C), while the thermal stability of the chemisorbent and the use of carbon steel sorber-reactors sets the upper bound (~ 550 C) of temperatures for practical operation of the TSSER process. Simulated process performances (sorption-reaction at 200 and 400 C, and regeneration at 550 C) show that the operation of the sorption-reaction step at 200 C increases the H2 and CO2 productivities of the process by, respectively, ~ 38% and 35 % without changing the (a) moles of H2 produced per mole of CO in the feed gas, and (b) net CO2 recovery as a compressed by-product gas. The total steam duty for the sorbent regeneration increases by ~ 14% for the lower sorption-reaction temperature operation. Another major benefit of the lower reaction temperature operation was a very large increase in the pressure of the CO2 by- product (e.g. 40 and 21 bars at, respectively, 200 and 400 C) when the reactor feed gas contained 20% CO + 80% H2O at a total pressure of 15 bar.