Breadcrumb
- Home
- Publications
- Proceedings
- 2007 Annual Meeting
- Education
- Student Poster Session: General Papers
- Novel Nanoenergetic Material Using Porous Copper Oxide Nanoparticles and Aluminum Nanoparticles
The nanoparticles were characterized using Transmission Electron Microscopy and Fourier transform infrared (FTIR) spectroscopy. Micrographs revealed the formation of nano-porous particles with a diameter of 75-100 nm with 4-6 nm pores. FITR was performed on all samples to confirm the formation of copper oxide and the successful removal of impurities. The combustion characteristics were determined by performing burn rate and reactivity measurements. Burn rate was measured using an optical method. The inner walls of a lexane tube were coated with nanothermite slurry. The combustion speed of the energetic material was obtained from the propagation distance traveled and measured time of propagation. The porous nanoparticles exhibit very high combustion speeds of 1900 m/s. In conclusion, the results clearly reveal that the nanothermites prepared with porous CuO nanoparticles (oxidizer) and Al nanoparticles (fuel) are indeed very promising for both military and civilian applications.