Breadcrumb
- Home
- Publications
- Proceedings
- 2007 Annual Meeting
- Materials Engineering and Sciences Division
- Cell-Material Interactions II
- (402b) Macrophages Exhibit Stable Phenotypic Markers in Extended Culture on Model Biomaterial Surfaces
Materials and Methods. Primary-derived bone marrow macrophages (BMMO) were harvested from C57/BL-6 mice (Jackson Labs). Murine monocyte/macrophage cell lines (IC-21, J774A.1, and RAW 264.7) were purchased from the ATCC (Manassas, VA) and were cultured under standard conditions. Model surfaces were prepared as previously described.1-3 These cells were then cultured on control and model biomaterial surfaces continuously for 21 days, a period of time equivalent to the completion of FBR mediated fibrosis in vivo. Media was changed daily, and cell-enriched media was analyzed for expression of many cytokines involved in inflammation and the FBR (GM-CSF, IFN-γ, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, MCP-1, and TNF). Cells were also imaged daily to observe morphology. At day 21 cells were probed for an assortment of surface markers that serve as macrophage markers, adhesion molecules, indicators of activation, and molecules implicated in macrophage fusion into foreign body giant cells (F4/80, CD14, CD40, CD11b, CD11c, CD18, CD54, Fc Receptor, Macrophage Mannose Receptor, CD40, and TLR-4).
Results and Discussion. Microscopic evaluation of each cell type on each surface over time showed an overall change in morphology among immortalized cell lines to a more rounded phenotype, whereas BMMO cells showed a more consistent morphology over time, keeping an astral shape despite crowding on the surface. Interestingly, RAW 264.7 cells exhibited fusion into multi-nuclear foreign body giant cells, indicating that certain macrophage lineage cells are capable of fusion without cytokine signaling from other inflammatory cells. Our previous work has involved the phenotyping of these cell types using flow cytometry to assay cell-surface protein expression.3 Compared to previous expression levels, very little change occurred after 21 days of continuous culture for any of the markers studied with the exception of the macrophage mannose receptor (MMR). MMR expression increased for all cell types on all surfaces, as MMR has been implicated in the fusion of macrophages this result indicates a greater potential for fusion of these cells after extended culture on biomaterial surfaces.
References. 1. Godek ML, Sampson JS, Duchsherer NL, McElwee Q, Grainger DW. J. Biomat. Sci. Polym. Ed., 17, 1141, (2006); 2. Godek ML, Michel R, Chamberlain LM, Castner DC, Grainger DW. (submitted J. Biomed. Mater. Res., 2006); 3. Chamberlain LM, Godek ML, Gonzalez-Juarrero M, Grainger DW. (submitted J. Biomed. Mater. Res., 2007).