2006 AIChE Annual Meeting
(539f) A Two-Dimensional Dynamic Model for a Tubular Solid Oxide Fuel Cell ( Sofc)
Authors
Although a detailed model is absolutely essential to capture the nonlinear characteristics of a SOFC, the computation time is prohibitively high for the model to be used in real-time applications such as control. In this talk, we will also present a reduced order lumped model that can be used in various real-time applications. A lumped model of the same unit cell was simulated in Pspice software. In this model, the reactants and product concentrations were considered only at the inlet and exit of the cell preserving their time-dependence. The partial pressure equations were approximated by an equivalent RC circuit. Substantial simplifications were also done in this model for the calculation of activation and concentration overpotential. An empirical relationship was developed to calculate the limiting current density for the system. Further, an approximation was used to calculate the exchange current density. It is observed that the transient response from the lumped model is in good agreement with the detailed model. Future work will include the use of the detailed model in optimization and the lumped model in control studies.