2006 AIChE Annual Meeting
(450e) Driven Assembly of Nanoparticles in Nematic Liquid Crystals
Authors
Optimization of the applications mentioned above requires a theoretical formalism providing a link between macroscopic experimental measurements (collective optical properties) and events occurring at much smaller length scales (particle aggregation, liquid crystal reorganization and binding events at the surface of the particles). Due to the large disparity in relevant length scales, traditional atomistic and molecular simulation techniques are not suitable to study these systems. In this work, we perform numerical simulations of 3D systems of spherical colloids dispersed in a liquid crystal solvent, by adopting a hybrid strategy that includes particle-based modeling of the colloids but treats the liquid crystal as a continuous field. Such a hybrid strategy was used in the past in 2D simulations of similar systems [5]. The effect of relevant physical variables will be analyzed and discussed.
[1] N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005); C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi and T. Li, J. Phys. Chem. B 109, 13857 (2005); D. A. Schultz, Curr. Opin. Biotechnol. 14, 13 (2003).
[2] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides, Chem. Rev. 105, 1103 (2005); E. Katz and I. Willner, Angew. Chem. Int. Ed. 43, 6042 (2004).
[3] J. M. Brake, M. K. Daschner, Y. Y. Luk and N. L. Abbott, Science 302, 2094 (2003); R. R. Shah and N. L. Abbott, Science 293, 1296 (2001); V. K. Gupta, J. J. Skaife, T. B. Dubrovsky and N. L. Abbott, Science 279, 2077 (1998).
[4] J. C. Loudet, P. Barois, P. Auroy, P. Keller, H. Richard and P. Poulin, Langmuir 20, 11336 (2004); J. C. Loudet, P. Barois and P. Poulin, Nature (London) 407, 611 (2000); P. Poulin, H. Stark, T. C. Lubensky and D. A. Weitz, Science 275, 1770 (1997).
[5] R. Yamamoto, Y. Nakayama and K. Kim, J. Phys.: Condens. Matter 16, S1945 (2004); R. Yamamoto, Phys. Rev. Lett. 87, 075502 (2001).